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Abstract. We study the gap-labelling pmperiies of the energy s p a ”  for the on-site model of 
onedimensional Fibonacci quasi-pcriodic lattices: we have obtained the mpation probabilities 
on subbands of the hierarchical energy speclrum and the siep heights of ttU: integrated density 
of states. It is analytically proved that the step height is equal to {mr). where the braces denote 
the kctional part, and m is an integer which can be used to label the wmponding energy gap. 
Numerical simulations confirm these results. 

I. Introduction 

Since the experimental study by Schechtman et nl [l] of an AI-Mn alloy that exhibits a 
diffraction pattem with peaks showing icosahedral symmetry, much attention has been 
focused on studies of quasi-periodic systems. The study of onedimensional quasi- 
periodic systems has become particularly relevant since the success in growing Fibonacci 
superlattices [Z-l] and the discovery [SI of onedimensional quasicrystals in rapidly 
solidified AIsoNi14Si6, A165Cu20Mn15 and AI&umCo5. A large n u m b  of theoretical 
studies have been devoted to the physical properties of one-dimensional quasicrystals of 
the Fibonacci type [6-16]. By means of the weak-bond approximation, Niu and Non [91 
first used the renormalization group method to investigate the electronic energy spectrum of 
one-dimensional Fibonacci quasi-crystals. By the use of the direct diagonalization method 
Liu and Riklund [l I ]  found that for the on-site model the energy spectrum exhibits a 
four-subband global structure, each of which further trifurcates following the hierarchy of 
splitting from one to three subsubbands. Subsequently, Liu and Sritrakool [ 151 used the 
renormalization group approach analytically to calculate the occupation probabilities of the 
electronic spechum and to locate the absolute heights of the steps in the integrated density 
of states (IDOS) of the on-site model for onedimensional Fibonacci quasi-crystals. The ms 
is an important parameter, which shows the structure of a Cantor-like spechum and appears 
to have a devil’s-staircase structure. The steps (or plateaux) of the Ims colrespond to the 
gaps in the energy spectrum and show their widths. The regular splitting of the spectrum 
allows us to investigate the gap-labelling rules. Luck and Petritis [7] have defined an almost 
periodic Laplace operator to describe the Fibonacci chain and to study the gap-labelling rules. 
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More recently, Luck [I71 has analysed perturbatively the ms of an arbitrary deterministic 
aperiodic sequence and found that the gaps in the energy spectrum can be ‘labelled’ by 
the singularities of the Fourier transform of the sequence of potentials. Ashraff et ai [IS] 
have found numerically that in two-dimensional Fibonacci quasi-lattices the steps in the 
lws curve for the electron and phonon cases occur at ordinate values. some of which have 
the form I = (mr} ,  where m is a non-zero integer. Bellissard et ai 1191 have obtained 
the exact labelling of all spectral gaps for the period-doubling sequence. Recently, the 
gap-labelling properties of the energy spectrum for the transfer model of one-dimensional 
Fibonacci quasi-lattices was studied by Liu et ai 1161. 

In fact, the gap-labelling properties were studied earlier for incommensurate potential 
systems that are defined by the Harper equation -fn+l - f , - ~  + u(n0L)f.  = Ef., where 
v(n0L) is a periodic function and 0 is the wavevector of the underlying periodic lattices 
with atomic spacing L and is an irrational number. The spectrum of this kind of one 
dimensional system also has a devil’s-staircase structure [Z-251. Claro and Wannier [22] 
proved that any gap in the spectrum can be labelled by a pair of integers n and m (positive 
or negative) and the Ims below that gap is equal to 

Equation (1) has been referred as a ‘gap-labelling theorem’ [U] because it gives a way 
of labelling the infinite hierarchy of gaps in the spectrum of the incommensurate systems. 
Subsequently the ‘gap-labelling theorem’ has been studied mathematically by Bellissard and 
co-workers [20,21]. In this paper, we prove analytically the gap-labelling theorem for the 
energy spectrum of the on-site model of one-dimensional Fibonacci quasi-lattices, for which 
the equation of motion is 

Tn+tfn+t  + Tnfn-1 = ( E  - Edfn. (2) 

For the on-site model the T, values (n  = I ,  2, . . .) take the values unity, and the site 
energies E, take two values E A  and Ee = -EA, which are arranged in a Fibonacci sequence 
[6-161. The theorem states that the steps of the Iws rigorously are equal to (mr) .  and m 
is a progressively increasing natural integer corresponding to different hierarchies of gaps 
of the spectrum. 

In section 2, we obtain the occupation probabilities (OPs) on subbands of the hierarchical 
energy spectrum and the step heights of the ms. In section 3, we find that an integer can 
be used to label the corresponding energy gap. 

2. Electronic energy spectrum and occupation probability 

The energy spectrum for the Fibonacci on-site model has been explained by different 
analytical methcds and confirmed by the numerical simulations. The decomposition- 
decimation method based on the renormalization group technique [9,15] may give the 
clearest physical picture for the formation of the pattern. Figure 1 exhibits the four-subband 
global structure and the trifurcation rule in the following hierarchies. From this figure we 
can see that the formation rules are as follows. 
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(1) The formation of a four-subband global structure is F17 = FIS + Ft4 + Fl3 + Fld 
which suggests that, for an nth-generation Fibonacci lattice, the global branching rule is 

F, = Fn-z + 4 - 3  + Fn-4 + Fn-3. (3) 

(2) For the subband structure, the formation rule is 

Fi = Fi-2 + f i - 3  + Fi-2. (4) 

Both of the above two rules can be analytically obtained by the following analysis. 
Because the golden mean t is greatly involved in the calculation, it is very helpful to write 
down the formulae concemed with T here. 

(1) t2 + r - 1 = 0, where t = (4 - 1)/2 = 0.61803398. 
(2) The recursion relation 

(5)  
t" + rn-l  = t"-2 (T +t) = t"-'. 2 

We consider the studied one-dimensional model of the lattice as a chain of atoms, which 
contains two kinds of atom: A and B. The on-site model, such as ABAAESABAABAAB for 
the seventh generation of Fibonacci chain, can be considered to be built up of three kinds 
of construction element: A, AA and B. For the nth-generation sequence. let Ni, N L  and 
Ni be the numbers of construction elements. respectively. We have found the following 
distribution rule [ I l l :  

Ni = Ni = Fn-2 NL = Fn-3 odd n 

N A -  " - F n 4  - + 2 Ni = Fn-2 NL = Fn-s - 1 even n.  

FIL'52'Fll'FI? 

0 400 800 1200 N 160 
Figure 1. ElecWNc specbum for an on-site model with hvo sile energies EA = -E8 = 2, for 
a seventeenth-generalion Fibonacci chain with N = 1597. me four-subband global shucwe 
and lhe distribution rules are shown 
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Let P(B) represent the OP for a B atom in an infinite Fibonacci chain, and similarly 
P(A) the OP for an isolated atom A, P (AA) the OP for a molecule AA, and P (A + AA) 
the oP  for atom species A. Therefore. we have 

P(B)/P(A+AA) = lim [Fn-~/ (Fn-4+2Fn-3)]  = r  =0.61803398 .... 
n-m 

Because P (A t AA) t P @ )  = 1, we have 

P @ )  = r2 

and 

P (A + AA) = 5. (6) 

On the other hand, the molegcules AA can be decomposed into bonding and antibonding 
biatomic molecular state subchains, the oPs of which are P+(AA) and P-(AA) ,  
respectively; they are equal to /'(AA). Because P(AA)/P(B) = liin+m(Fn-3/Fn-2) = r ,  
then the OPs for the four main subbands are as follows: 

which can be confirmed by the equality r2 + r3 + r4 f r3 = r2 + r = 1. 
This analytical result confirms the suggested global branching rule shown by 

equation (3). because, for an infinite Fibonacci chain, the proportion of constructing elements 
between two successive generations equals F,-,/F,, = r. Therefore, equation (3) satisfies 
the general equation (7). 

To explain the trifurcation appearing in the following hierarchies, Liu and Sritakool [I51 
noted that the on-site model chain can be decomposed into four transfer model subchains 
with bond lengths arranged in a Fibonacci sequence. The energy spectrum of each subchain 
would further trifurcate indefinitely. This conclusion for the transfer model can be easily 
obtained if we follow the deduction performed by Niu and Non 191. Now we shall study 
the distribution of OPs for the trifurcating subsubbands. Using the notation Ns and NL to 
label the numbers of short bonds and long bonds, we have Ns/NL = r .  For each subband 
split into three subsubbands, a simple calculation shows that 

P(middle subsubband) = r3 

P(side subsubband) = r2 

which can be confirmed by the equality r2 -t r3 t r2 = 5' + r = 1. Consequently, we 
obtain the second conclusion that the side subband: middle subband OP ratio is r2 : r3. 
From the relation F,,-,/Fn = r again, we can see that the formation rule (4) is exactly the 
same as the analytical result 

f i -2  : f i - 3  : 4-2 = r' : r3 : 2. 
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Using the above two distribution rules (7) and (8) and recursion relations (S), we can 
easily calculate the OP on any subband to a high branching hierarchy. For the first branching 
hierarchy, the OPs of the four main subbands are r2, r3, r4 and r3, respectively, as proved 
above. Table 1 shows the OB of all subsubbands up to the second hierarchy of the e n e w  
spectrum. On the basis of the above results on the OPS of the subbands, we can obtain 
analytically the step heights of the IWS by the use of the following formula: 

where P( i )  is the OP of the ith subsubband in the hierarchy studied, and E. is the highest 
energy of the nth subsubband (lower edge of the ith gap). I ( & )  is the IWS up to the 
energy E. and corresponds to a step in the m.3 ‘stairs’ curve. Table 1 gives the absolute 
heights of steps in the DOS as well as the OP of the subsubbands for an infinite Fibonacci 
chain up to the second hierarchy of the spectrum. 

Table 1. TIE occupation probabilities on the subbands and the srep heights of the IWS expressed 
by ( n + m r ) .  

OP 
Fmt hierarchy Second hierarchy 
73 TS 

4 - 5  
r6 
-1 + 3 r  
-3 

2 - 2r 1 6  

-2 + 4r 
r3 

1 - 7  14 

d rs 

r4 

-1 + 2 T  

2 - 3 1  

3. Gap labelling 

Now we study the gap-labelling property. Using the recursion relation of the Fibonacci 
number F,, = + Fn-2 with 4 = 1 and F2 = 1, we have obtained the following 
recursion relationship between the golden mean r and Fn: 
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which is a key formula in the proof of the gap-labelling theorem and also is an interesting 
relationship connecting the golden mean and Fibonacci numbers. 

We can use a sequence 1.2.3.4 to label the first hierarchy of the spectrum and i, 0 , l  
for the higher hierarchy. A subband of the nth hierarchy can be labelled ([I, 12. 13, . . . , In )  
with 11 = I ,Z,  3,4  and ~i = i, 0.1 (i = 2.3, . . . , n). Let & and P ( I I , ~ ~ , .  . . ,I.) denote the 
highest energy and OP of the subband ( I I .  12,. . . , ln) .  The step height I(fi1,;!1.12, . . . ,in) of 
the IDOS, which corresponds to the low edge of the gap located above the subband studied, 
can be calculated by the following method. 

First it is easy to see that, with p(1) = r2, P(2)  = r3,  p(3) = r4 and p(4) = r3,  

P( i l* i2 ,  .. .,in) = P(iI )P(i2) ... P(i"). (11) 

On the other hand, for the four subbands of the first hierarchy of the spectrum we have 

I ( E & l )  = P ( I )  = Y Z  

1(&2)= P ( l ) + P ( 2 ) = T 2 + T 3 = T  

I(&$) = P ( I )  + P(2)  + P(3) = T 2  + T 3  + T 4  = 2 T 2  

I(Eb;4) = P(1) + P(2)  + P(3) + P(4) = T 2  + r3 + T 3  + T 3  = 1 

For the ( I , .  12) subband of the second hierarchy, we have 

I (Eb;l l !  h) = I([I - 1) f P(!I,h -2) + P(iI, 12 - 1) + P(ll,h). 

If I2 - i -= -1, P(I l ,  12 - i) is taken to be zero. 

IDOS is equal to 
In general, for the ( 1 1 , 1 2 ,  . . . , I n )  subband of the nth hierarchy the step height of the 

I(Eb$l, 12, ... 9 ! " - I *  in) = I(ll, 1 2 . .  . . 9 in-1 - 1) + P(~1.h.. .., ln-1,  1" - 2 )  

+ P ( i I ,  I,.. . . , I d ,  I" - 1) + P ( h ,  12, .. ., im-l.id (12) 

where IL = 1.2.3.4 and li = 1,0 ,1  (i = 2.3 ,..., n). If I, - i  < -1. P(II.12. ..., 1. -i) 
is taken to be zero. 

The proof of the above formulae is straightforward. Equations ( I  I )  and (12) can be 
used to obtain the OP and the step height of the Iws for any subband of any hierarchy. 

From equation ( I  1) we can see that the OP of every subband in any hierarchy has a T i  

form. Therefore, equation (12) can be rewritten as 

- 

where ki is a positive integer; the range of the parameter i depends on the hierarchy and 
subband studied. On the other hand, because 0 c I < 1, from equations (10) and (13) we 
can conclude that the step height of the ms can be written as 

I = n + m  = (ms} (14) 
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Table 2. The characteristic number m of the gap. 

Hierarchy mi (positive) mz (negative) 

First 1 -1. -2 
Second 2 4 6  - ( m ~  + 1) 
Third 5. 7-12. 14, 16. 17. 19, 27 -0" 1) 
Founh 13.15, 18, 2~~26.28-33.35. -(mi + 1) 

37, 38, 40, 4246, 48. 50, 51. 53. 
61.69, 71. 72. 74, 82. 116 

Fifth 34.36, 39.41,47.49,52, W. -(mi + I) 
62-68, 70. 73. 75-81, 83-88, 90, 
9293.95. 97-101. 103. 105. 106. 
108, 11LLl15. 117-122, 124, 
126. 127, 129, 131-135. 137. 
139. 140. 142 150, 158. 160. 161, 
163. 171, 179, 181, 182. 184. 
186-190. 192. 194, 195. 197,205. 
213.2l5.216,218. 226,260.294, 
302,304, 305. 307, 315,349.493 

Figure 2. The im as a function of energy for a seventeenth-generalion Fibonacci chain with 
site number N = 1597. The characteristic numbers m are marked in the corresponding steps 
(saps). 

where n and m are both sums of Fibonacci numbers: therefore they arc integers. 
Because T is an irrational number, from equation (12) for the step height we can see 

that the {mr]  for different gaps are absolutely different. This point is also guaranteed by the 
Cantor-like hierarchical sbucture of the spectrum. Consequently, every gap of any hierarchy 
of the spectrum, which corresponds to a step of the IWS, is a uniquely characteristic number 
of a gap: so we can use m to label the gaps. Table 1 gives the OPS of subbands and the step 
heights of the lWs expressed as n f m r .  Table 2 presents the corresponding characteristic 
numbers of the IWS up to the fifth hierarchy of the spectrum for an infinite Fibonacci chain. 
Unlike the transfer model, for the on-site model the spectrum is asymmetrical with respect 
to E = 0. Consequently, in the IWS curve the steps are not symmetric either, which implies 
that the characteristic numbers m are not asymmetric with respect to E = 0. This result 
is different from that of the transfer model, for which Liu et a1 [ 161 have proved that the 
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ri:p 03 

0.70 
- 7  3 2  o_ 5? - 3  

0.65 . 0.1 

0 
-2,7 -2.6 -2.5 -2.L -2,3 E -2.2 2 38 2.6 2.12 2.LL 2.L6 E 2.1 

1 
0.6 [b) ( d  I 

I !  I 
1.1 1.2 1.3 E 1.1 

J 
3.15 3.2 3.25 3.3 E 

Figure 3. Enlarged figures for the four main subbands (shown in figure 2). The CharaCterisiiC 
numbers m are maxked in the corresponding gaps. 

TableJ. The ywlylical and numeriwl resuluoflhe step kighlsofthe ms fora OnedimensioIUl 
fibonaccr c M n .  The mulls are for a Fibowxi chain wilh sile number N = 1597. 

Fml hierarchy Second hiemhy 

N"nIh2d NUWIical 

-5 0.909830 0.909831 
3 0.854102 0.854 101 

6 0.708204 0.708203 
-7 0.673762 0.673763 

-4 0.527864 0.527865 
4 0.472136 0.472135 

2 0.236068 0.236067 
-3 0.145898 0,145899 

m Imrl rCsUl1 m Imrl ltLUI1 

-2 0.763932 0.763933 

1 0.618034 0.618034 

-I 0.381 966 0.381 966 

values of m are asymmetric with respect to E = 0. From the m-values shown in table 2, 
we note that, on going to a higher hierarchy, the integer m progressively increases in a 
natural-number sequence starting from 1. In the same hierarchy, for the transfer model the 
positive integer ml and the negative integer mz satisfy m2 = -ml [16], but for the on-site 
model the relation is m2 = -(mi + 1). m does not continuously increase from one hierarchy 
to the next hierarchy but in jumps; before the fourth hierarchy the natural numbers missing 
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in the m-values of a hierarchy appear immediately in the following hierarchy, but in the 
higher hierarchies this does not hold. 

The numerical results on the m s  are shown in figures 2 and 3 for the seventcenth- 
generation Fibonacci chain with site number N = 1597: here, we have chosen the site energy 
Es = -EA = 2.0. In figure 2 we plot the entire spectrum, in which we can clearly see the 
hierarchical four-main-subband structure of the energy spectrum and the steps of the ms. 
Figures 3(a), 3(6), 3(c) and 3(d) are the enlarged plots of the four subbands, respectively. 
Even though the numerical simulation is performed for a small size of Fibonacci chain, the 
results are in good agreement with the analytical results for an infinite Fibonacci chain; the 
comparison between them is presented in table 3. 

4. Brief summary 

We have studied the gap-labelling properties of the energy spectrum of the on-site model 
for onedimensional Fibonacci quasi-crystals. We obtained the OPs on subbands of the 
hierarchical energy spectrum and the step heights of the m s  and found that an integer 
m can be used to label the corresponding energy gap. The numerical simulations confirm 
these results very well. The theoretical and numerical results show that the gap-labelling 
property of the on-site model is different from that of the transfer model. 
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